Subalgebra A12+A11E16
67 out of 119
Computations done by the calculator project.

Subalgebra type: A12+A11 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from A12 .
Centralizer: A12 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: 2A12
Basis of Cartan of centralizer: 3 vectors: (1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, -1)
Contained up to conjugation as a direct summand of: A12+2A11 , A12+A41+A11 , 2A12+A11 .

Elements Cartan subalgebra scaled to act by two by components: A12: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, A11: (0, 0, 0, 0, 1, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: g36, g2, g11
Positive simple generators: g36, g2, g11
Cartan symmetric matrix: (210120002)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (210120002)
Decomposition of ambient Lie algebra: V2ω33Vω2+ω33Vω1+ω3Vω1+ω22Vω33Vω23Vω19V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω3+6ψ3Vω2+2ψ1+4ψ3Vω1+ω3+2ψ2+2ψ3Vω22ψ1+2ψ2+4ψ3Vω1+ω3+2ψ12ψ2+2ψ3V2ψ1+2ψ2Vω22ψ2+4ψ3Vω1+ω32ψ1+2ψ3V2ψ1+4ψ2V2ω3Vω1+ω2V4ψ12ψ2Vω2+ω3+2ψ12ψ33V0Vω2+ω32ψ1+2ψ22ψ3Vω1+2ψ24ψ3V4ψ1+2ψ2V2ψ14ψ2Vω2+ω32ψ22ψ3Vω1+2ψ12ψ24ψ3V2ψ12ψ2Vω12ψ14ψ3Vω36ψ3
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 25) ; the vectors are over the primal subalgebra.g7g3g1h3h6+h5h1g1g3g7g28g30g32g10g15g18g6g5g35g31g33g34g16g21g24g11
weight000000000ω1ω1ω1ω2ω2ω2ω3ω3ω1+ω2ω1+ω3ω1+ω3ω1+ω3ω2+ω3ω2+ω3ω2+ω32ω3
weights rel. to Cartan of (centralizer+semisimple s.a.). 2ψ12ψ22ψ14ψ24ψ1+2ψ20004ψ12ψ22ψ1+4ψ22ψ1+2ψ2ω12ψ14ψ3ω1+2ψ12ψ24ψ3ω1+2ψ24ψ3ω22ψ2+4ψ3ω22ψ1+2ψ2+4ψ3ω2+2ψ1+4ψ3ω36ψ3ω3+6ψ3ω1+ω2ω1+ω32ψ1+2ψ3ω1+ω3+2ψ12ψ2+2ψ3ω1+ω3+2ψ2+2ψ3ω2+ω32ψ22ψ3ω2+ω32ψ1+2ψ22ψ3ω2+ω3+2ψ12ψ32ω3
Isotypic module decomposition over primal subalgebra (total 23 isotypic components).
Isotypical components + highest weightV2ψ12ψ2 → (0, 0, 0, -2, -2, 0)V2ψ14ψ2 → (0, 0, 0, 2, -4, 0)V4ψ1+2ψ2 → (0, 0, 0, -4, 2, 0)V0 → (0, 0, 0, 0, 0, 0)V4ψ12ψ2 → (0, 0, 0, 4, -2, 0)V2ψ1+4ψ2 → (0, 0, 0, -2, 4, 0)V2ψ1+2ψ2 → (0, 0, 0, 2, 2, 0)Vω12ψ14ψ3 → (1, 0, 0, -2, 0, -4)Vω1+2ψ12ψ24ψ3 → (1, 0, 0, 2, -2, -4)Vω1+2ψ24ψ3 → (1, 0, 0, 0, 2, -4)Vω22ψ2+4ψ3 → (0, 1, 0, 0, -2, 4)Vω22ψ1+2ψ2+4ψ3 → (0, 1, 0, -2, 2, 4)Vω2+2ψ1+4ψ3 → (0, 1, 0, 2, 0, 4)Vω36ψ3 → (0, 0, 1, 0, 0, -6)Vω3+6ψ3 → (0, 0, 1, 0, 0, 6)Vω1+ω2 → (1, 1, 0, 0, 0, 0)Vω1+ω32ψ1+2ψ3 → (1, 0, 1, -2, 0, 2)Vω1+ω3+2ψ12ψ2+2ψ3 → (1, 0, 1, 2, -2, 2)Vω1+ω3+2ψ2+2ψ3 → (1, 0, 1, 0, 2, 2)Vω2+ω32ψ22ψ3 → (0, 1, 1, 0, -2, -2)Vω2+ω32ψ1+2ψ22ψ3 → (0, 1, 1, -2, 2, -2)Vω2+ω3+2ψ12ψ3 → (0, 1, 1, 2, 0, -2)V2ω3 → (0, 0, 2, 0, 0, 0)
Module label W1W2W3W4W5W6W7W8W9W10W11W12W13W14W15W16W17W18W19W20W21W22W23
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g7
g3
g1
Cartan of centralizer component.
h3
h6+h5
h1
g1
g3
g7
g28
g22
g18
g30
g19
g15
g32
g14
g10
g10
g14
g32
g15
g19
g30
g18
g22
g28
g6
g5
g5
g6
Semisimple subalgebra component.
g35
g2
g36
h2
h6+2h5+3h4+2h3+2h2+h1
g36
2g2
g35
g31
g17
g23
g12
g27
g24
g33
g13
g26
g9
g25
g21
g34
g8
g29
g4
g20
g16
g16
g20
g4
g29
g8
g34
g21
g25
g9
g26
g13
g33
g24
g27
g12
g23
g17
g31
Semisimple subalgebra component.
g11
h6+h5
2g11
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above0000000ω1
ω1+ω2
ω2
ω1
ω1+ω2
ω2
ω1
ω1+ω2
ω2
ω2
ω1ω2
ω1
ω2
ω1ω2
ω1
ω2
ω1ω2
ω1
ω3
ω3
ω3
ω3
ω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
ω1+ω3
ω1+ω2+ω3
ω1ω3
ω2+ω3
ω1+ω2ω3
ω2ω3
ω1+ω3
ω1+ω2+ω3
ω1ω3
ω2+ω3
ω1+ω2ω3
ω2ω3
ω1+ω3
ω1+ω2+ω3
ω1ω3
ω2+ω3
ω1+ω2ω3
ω2ω3
ω2+ω3
ω1ω2+ω3
ω2ω3
ω1+ω3
ω1ω2ω3
ω1ω3
ω2+ω3
ω1ω2+ω3
ω2ω3
ω1+ω3
ω1ω2ω3
ω1ω3
ω2+ω3
ω1ω2+ω3
ω2ω3
ω1+ω3
ω1ω2ω3
ω1ω3
2ω3
0
2ω3
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ψ12ψ22ψ14ψ24ψ1+2ψ204ψ12ψ22ψ1+4ψ22ψ1+2ψ2ω12ψ14ψ3
ω1+ω22ψ14ψ3
ω22ψ14ψ3
ω1+2ψ12ψ24ψ3
ω1+ω2+2ψ12ψ24ψ3
ω2+2ψ12ψ24ψ3
ω1+2ψ24ψ3
ω1+ω2+2ψ24ψ3
ω2+2ψ24ψ3
ω22ψ2+4ψ3
ω1ω22ψ2+4ψ3
ω12ψ2+4ψ3
ω22ψ1+2ψ2+4ψ3
ω1ω22ψ1+2ψ2+4ψ3
ω12ψ1+2ψ2+4ψ3
ω2+2ψ1+4ψ3
ω1ω2+2ψ1+4ψ3
ω1+2ψ1+4ψ3
ω36ψ3
ω36ψ3
ω3+6ψ3
ω3+6ψ3
ω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
ω1+ω32ψ1+2ψ3
ω1+ω2+ω32ψ1+2ψ3
ω1ω32ψ1+2ψ3
ω2+ω32ψ1+2ψ3
ω1+ω2ω32ψ1+2ψ3
ω2ω32ψ1+2ψ3
ω1+ω3+2ψ12ψ2+2ψ3
ω1+ω2+ω3+2ψ12ψ2+2ψ3
ω1ω3+2ψ12ψ2+2ψ3
ω2+ω3+2ψ12ψ2+2ψ3
ω1+ω2ω3+2ψ12ψ2+2ψ3
ω2ω3+2ψ12ψ2+2ψ3
ω1+ω3+2ψ2+2ψ3
ω1+ω2+ω3+2ψ2+2ψ3
ω1ω3+2ψ2+2ψ3
ω2+ω3+2ψ2+2ψ3
ω1+ω2ω3+2ψ2+2ψ3
ω2ω3+2ψ2+2ψ3
ω2+ω32ψ22ψ3
ω1ω2+ω32ψ22ψ3
ω2ω32ψ22ψ3
ω1+ω32ψ22ψ3
ω1ω2ω32ψ22ψ3
ω1ω32ψ22ψ3
ω2+ω32ψ1+2ψ22ψ3
ω1ω2+ω32ψ1+2ψ22ψ3
ω2ω32ψ1+2ψ22ψ3
ω1+ω32ψ1+2ψ22ψ3
ω1ω2ω32ψ1+2ψ22ψ3
ω1ω32ψ1+2ψ22ψ3
ω2+ω3+2ψ12ψ3
ω1ω2+ω3+2ψ12ψ3
ω2ω3+2ψ12ψ3
ω1+ω3+2ψ12ψ3
ω1ω2ω3+2ψ12ψ3
ω1ω3+2ψ12ψ3
2ω3
0
2ω3
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ψ12ψ2M2ψ14ψ2M4ψ1+2ψ2M0M4ψ12ψ2M2ψ1+4ψ2M2ψ1+2ψ2Mω12ψ14ψ3Mω1+ω22ψ14ψ3Mω22ψ14ψ3Mω1+2ψ12ψ24ψ3Mω1+ω2+2ψ12ψ24ψ3Mω2+2ψ12ψ24ψ3Mω1+2ψ24ψ3Mω1+ω2+2ψ24ψ3Mω2+2ψ24ψ3Mω22ψ2+4ψ3Mω1ω22ψ2+4ψ3Mω12ψ2+4ψ3Mω22ψ1+2ψ2+4ψ3Mω1ω22ψ1+2ψ2+4ψ3Mω12ψ1+2ψ2+4ψ3Mω2+2ψ1+4ψ3Mω1ω2+2ψ1+4ψ3Mω1+2ψ1+4ψ3Mω36ψ3Mω36ψ3Mω3+6ψ3Mω3+6ψ3Mω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2Mω1+ω32ψ1+2ψ3Mω1+ω2+ω32ψ1+2ψ3Mω2+ω32ψ1+2ψ3Mω1ω32ψ1+2ψ3Mω1+ω2ω32ψ1+2ψ3Mω2ω32ψ1+2ψ3Mω1+ω3+2ψ12ψ2+2ψ3Mω1+ω2+ω3+2ψ12ψ2+2ψ3Mω2+ω3+2ψ12ψ2+2ψ3Mω1ω3+2ψ12ψ2+2ψ3Mω1+ω2ω3+2ψ12ψ2+2ψ3Mω2ω3+2ψ12ψ2+2ψ3Mω1+ω3+2ψ2+2ψ3Mω1+ω2+ω3+2ψ2+2ψ3Mω2+ω3+2ψ2+2ψ3Mω1ω3+2ψ2+2ψ3Mω1+ω2ω3+2ψ2+2ψ3Mω2ω3+2ψ2+2ψ3Mω2+ω32ψ22ψ3Mω1ω2+ω32ψ22ψ3Mω1+ω32ψ22ψ3Mω2ω32ψ22ψ3Mω1ω2ω32ψ22ψ3Mω1ω32ψ22ψ3Mω2+ω32ψ1+2ψ22ψ3Mω1ω2+ω32ψ1+2ψ22ψ3Mω1+ω32ψ1+2ψ22ψ3Mω2ω32ψ1+2ψ22ψ3Mω1ω2ω32ψ1+2ψ22ψ3Mω1ω32ψ1+2ψ22ψ3Mω2+ω3+2ψ12ψ3Mω1ω2+ω3+2ψ12ψ3Mω1+ω3+2ψ12ψ3Mω2ω3+2ψ12ψ3Mω1ω2ω3+2ψ12ψ3Mω1ω3+2ψ12ψ3M2ω3M0M2ω3
Isotypic characterM2ψ12ψ2M2ψ14ψ2M4ψ1+2ψ23M0M4ψ12ψ2M2ψ1+4ψ2M2ψ1+2ψ2Mω12ψ14ψ3Mω1+ω22ψ14ψ3Mω22ψ14ψ3Mω1+2ψ12ψ24ψ3Mω1+ω2+2ψ12ψ24ψ3Mω2+2ψ12ψ24ψ3Mω1+2ψ24ψ3Mω1+ω2+2ψ24ψ3Mω2+2ψ24ψ3Mω22ψ2+4ψ3Mω1ω22ψ2+4ψ3Mω12ψ2+4ψ3Mω22ψ1+2ψ2+4ψ3Mω1ω22ψ1+2ψ2+4ψ3Mω12ψ1+2ψ2+4ψ3Mω2+2ψ1+4ψ3Mω1ω2+2ψ1+4ψ3Mω1+2ψ1+4ψ3Mω36ψ3Mω36ψ3Mω3+6ψ3Mω3+6ψ3Mω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2Mω1+ω32ψ1+2ψ3Mω1+ω2+ω32ψ1+2ψ3Mω2+ω32ψ1+2ψ3Mω1ω32ψ1+2ψ3Mω1+ω2ω32ψ1+2ψ3Mω2ω32ψ1+2ψ3Mω1+ω3+2ψ12ψ2+2ψ3Mω1+ω2+ω3+2ψ12ψ2+2ψ3Mω2+ω3+2ψ12ψ2+2ψ3Mω1ω3+2ψ12ψ2+2ψ3Mω1+ω2ω3+2ψ12ψ2+2ψ3Mω2ω3+2ψ12ψ2+2ψ3Mω1+ω3+2ψ2+2ψ3Mω1+ω2+ω3+2ψ2+2ψ3Mω2+ω3+2ψ2+2ψ3Mω1ω3+2ψ2+2ψ3Mω1+ω2ω3+2ψ2+2ψ3Mω2ω3+2ψ2+2ψ3Mω2+ω32ψ22ψ3Mω1ω2+ω32ψ22ψ3Mω1+ω32ψ22ψ3Mω2ω32ψ22ψ3Mω1ω2ω32ψ22ψ3Mω1ω32ψ22ψ3Mω2+ω32ψ1+2ψ22ψ3Mω1ω2+ω32ψ1+2ψ22ψ3Mω1+ω32ψ1+2ψ22ψ3Mω2ω32ψ1+2ψ22ψ3Mω1ω2ω32ψ1+2ψ22ψ3Mω1ω32ψ1+2ψ22ψ3Mω2+ω3+2ψ12ψ3Mω1ω2+ω3+2ψ12ψ3Mω1+ω3+2ψ12ψ3Mω2ω3+2ψ12ψ3Mω1ω2ω3+2ψ12ψ3Mω1ω3+2ψ12ψ3M2ω3M0M2ω3

Semisimple subalgebra: W_{16}+W_{23}
Centralizer extension: W_{1}+W_{2}+W_{3}+W_{4}+W_{5}+W_{6}+W_{7}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00, 0.00): (266.67, 333.33)
1: (0.00, 1.00, 0.00, 0.00, 0.00, 0.00): (233.33, 366.67)
2: (0.00, 0.00, 1.00, 0.00, 0.00, 0.00): (200.00, 300.00)
3: (0.00, 0.00, 0.00, 1.00, 0.00, 0.00): (200.00, 300.00)
4: (0.00, 0.00, 0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
5: (0.00, 0.00, 0.00, 0.00, 0.00, 1.00): (200.00, 300.00)



Made total 450 arithmetic operations while solving the Serre relations polynomial system.